Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This is a continuation, and conclusion, of our study of bounded solutions u of the semilinear parabolic equation $$u_t=u_{xx}+f(u)$$ u t = u xx + f ( u ) on the real line whose initial data $$u_0=u(\cdot ,0)$$ u 0 = u ( · , 0 ) have finite limits $$\theta ^\pm $$ θ ± as $$x\rightarrow \pm \infty $$ x → ± ∞ . We assume that f is a locally Lipschitz function on $$\mathbb {R}$$ R satisfying minor nondegeneracy conditions. Our goal is to describe the asymptotic behavior of u ( x , t ) as $$t\rightarrow \infty $$ t → ∞ . In the first two parts of this series we mainly considered the cases where either $$\theta ^-\ne \theta ^+$$ θ - ≠ θ + ; or $$\theta ^\pm =\theta _0$$ θ ± = θ 0 and $$f(\theta _0)\ne 0$$ f ( θ 0 ) ≠ 0 ; or else $$\theta ^\pm =\theta _0$$ θ ± = θ 0 , $$f(\theta _0)=0$$ f ( θ 0 ) = 0 , and $$\theta _0$$ θ 0 is a stable equilibrium of the equation $${{\dot{\xi }}}=f(\xi )$$ ξ ˙ = f ( ξ ) . In all these cases we proved that the corresponding solution u is quasiconvergent—if bounded—which is to say that all limit profiles of $$u(\cdot ,t)$$ u ( · , t ) as $$t\rightarrow \infty $$ t → ∞ are steady states. The limit profiles, or accumulation points, are taken in $$L^\infty _{loc}(\mathbb {R})$$ L loc ∞ ( R ) . In the present paper, we take on the case that $$\theta ^\pm =\theta _0$$ θ ± = θ 0 , $$f(\theta _0)=0$$ f ( θ 0 ) = 0 , and $$\theta _0$$ θ 0 is an unstable equilibrium of the equation $${{\dot{\xi }}}=f(\xi )$$ ξ ˙ = f ( ξ ) . Our earlier quasiconvergence theorem in this case involved some restrictive technical conditions on the solution, which we now remove. Our sole condition on $$u(\cdot ,t)$$ u ( · , t ) is that it is nonoscillatory (has only finitely many critical points) at some $$t\ge 0$$ t ≥ 0 . Since it is known that oscillatory bounded solutions are not always quasiconvergent, our result is nearly optimal.more » « less
An official website of the United States government

Full Text Available